Paleomagnetism in Extremadura (Central Iberian zone, Spain) Paleozoic rocks: extensive remagnetizations and further constraints on the extent of the Cantabrian orocline

Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, Mark J. Dekkers & Cor G. Langereis
Paleomagnetism in Extremadura (Central Iberian zone, Spain)
Paleozoic rocks: extensive remagnetizations and further constraints on the extent of the Cantabrian orocline

Daniel Pastor-Galán1 • Gabriel Gutiérrez-Alonso2,3 • Mark J. Dekkers4 • Cor G. Langereis4

Introduction
The winding Variscan belt in Iberia, featuring the Cantabrian orocline (NW Iberia) and the Central Iberian curve, is a foremost expression of the late Carboniferous amalgamation of Pangea, which produced remagnetizations spanning almost the entire globe.

Geological settings
Also in Iberia, late Carboniferous remagnetizations are widespread often hindering paleomagnetic interpretations in terms of pre-Pangean geologic history. In contrast, such remagnetizations facilitated the kinematic study of the Cantabrian orocline. Immediately to its south is located the Central Iberian curve whose geometry and kinematics are under debate. Recent studies suggest that this putative structure cannot have formed in the same process as the Cantabrian orocline.

Results
Here we present a paleomagnetic and rock magnetic study from Extremadura, a region in the utmost west of the southern limb of the Central Iberian curve. Our new results show two distinct remagnetization events in Paleozoic rocks in Extremadura: (1) Mesozoic or Cenozoic remagnetization occurring in dolomitized limestones and (2) late Carboniferous remagnetization in limestones, characterized by consistent shallow inclinations, but largely scattered declinations indicating a counter clockwise (CCW) vertical axis rotation. Pyrrhotite is documented as magnetic carrier in the limestones which testifies a remagnetization under anchimetamorphic conditions, i.e. during the Variscan orogeny.

Interpretation
We interpret the declination scattering as a remagnetization coeval to the vertical axis rotation. The described CCW rotations are those expected for the southern limb of the Cantabrian orocline and are in disagreement with a late Carboniferous secondary origin for the Central Iberian bend, extending the Cantabrian orocline to at least most of the Iberian peninsula.

Keywords
Paleomagnetism · Central Iberian zone · Remagnetization · Cantabrian orocline · Carboniferous tectonics

Resumen
Introducción El orógeno Varisco, que en la península Ibérica está curvado y contiene el Oroclinal Cantábrico (NO de Iberia) y la curva orogénica Centro Ibérica, es el resultado más visible de la amalgamación de Pangea en el Carbonífero superior. Durante ese tiempo, la formación de Pangea produjo remagnetizaciones en todos los continentes. En Iberia, las remagnetizaciones del Carbonífero superior son muy extensas y afectan a casi todas las rocas ocultando y dificultando cualquier interpretación paleomagnética de la historia geológica anterior al Pérmico. Paradójicamente, dichas remagnetizaciones facilitaron el estudio de la cinemática del Oroclinal Cantábrico. Inmediatamente al sur de este orocline se sitúa la curva...
orogénica Centro Ibérica cuya geometría y cinemática están bajo debate. Algunos estudios recientes apuntan a la posibilidad de que la curva Centro Ibérica se formase a la vez que el Oroclinal Cantábrico.

Resultados En este artículo presentamos los resultados paleomagnéticos obtenidos rocas Paleozoicas de Extremadura, región que contiene la sección sur-occidental de la curva Centro Ibérica. Nuestros resultados muestran dos remagnetizaciones separadas en el tiempo: 1) Una remagnetización Mesozóica o Cenozoica que aparece en calizas dolomitizadas y 2) Una remagnetización del Carbonífero tardío cuyas características incluyen inclinaciones subhorizontales y declinaciones dispersas que indican una rotación de eje vertical en sentido horario. Además, hemos identificado pirrotina como mineral magnético en las calizas. Este mineral solo aparece en calizas remagnetizadas durante metamorfismo de bajo grado (anquizona).

Discusión Intentamos que la dispersión en la declinación registra una remagnetización que ocurrió a la vez que la rotación de ejes verticales. La rotación horaria que sugieren nuestros resultados coincide con la esperada para el flanco sur del Oroclinal Cantábrico. Estos resultados contradicen la posibilidad de que la curva Centro Ibérica y el Oroclinal Cantábrico ocurriesen al mismo tiempo y con carácter secundario respecto a la orogenia Varisca, y extienden las rotaciones de eje vertical ligadas al Oroclinal Cantábrico a todo el sur oeste de la Península Ibérica.

Palabras clave Paleomagnetismo · Zona Centro-Ibérica · remagnetización · Oroclina Cantábrico · Tectónica del Carbonífero

1 Introduction

Remagnetizations are ubiquitous in most orogens on Earth, from the Alps (e.g. Pueyo et al. 2007) to the Himalayas (e.g. Huang et al. 2017) and the Rocky Mountains (e.g. Enkin et al. 2000). In a remagnetized rock, the original natural remanent magnetization (NRM) is replaced or overprinted due a set of geologic processes acting alone or in concert. Although sometimes disregarded because of the implied information loss—the rock record before the orogenesis cannot be recovered-, remagnetized rocks have proven to be an excellent tool to unravel orogenic kinematics. They are capable of constraining vertical axis rotations (e.g. Gong et al. 2009; Izquierdo-Llavall et al. 2015) or evaluating subsequent deformation phases coeval to or postdating the remagnetization event (e.g. Calvín et al. 2017). Remagnetized rocks, therefore, remain as an important source of useful geological information.

The final amalgamation of Pangaea during the late Paleozoic Variscan–Alleghanian orogeny is widely recognized as having caused global-scale remagnetizations (e.g. Stamatakos et al. 1996; Zegers et al. 2003; Elmore et al. 2012). In the Iberian peninsula, the studies of the widespread late Carboniferous remagnetizations (e.g. Weil and van der Voo 2002; Tohver et al. 2008) were crucial to constrain the kinematics of the Cantabrian “arc”, a strongly bent section of the Variscan orogen in Northern Iberia interpreted as a secondary orocline (Hirt et al. 1992; van der Voo et al. 1997; Weil et al. 2000, 2001, 2013; Weil 2006). More recently, the late Carboniferous remagnetizations delivered pivotal input for Pastor-Galán et al. (2015a, 2016) and Fernández-Lozano et al. (2016) to discuss and discard a coeval secondary origin for the alleged curvature in Central Iberia (e.g. Martínez Catalán 2011; Shaw et al. 2012). The extent and boundaries of the Cantabrian orocline are now considered to include the two Paleozoic continents, Gondwana and Laurussia (Pastor-Galán et al. 2015b), involved in the Carboniferous Variscan collision in western Europe.

In this paper we investigate the paleomagnetism and rock magnetism in rocks from Extremadura (southern Central Iberian zone), which provide new insights into the expression of the late Carboniferous remagnetization event in the Iberian hinterland of the Variscan orogen. In addition, our results help to further constrain the extent and kinematics of the Cantabrian orocline and its relationship with the putative Central Iberian curve and assess the extensive hydrothermal activity occurred in Iberia during post-Paleozoic times.

2 Geological background

The collision between Laurussia and Gondwana and several microplates resulted in the late Paleozoic orogen in central and western Europe, known as the Variscan orogen (e.g. Nance et al. 2010). The earliest record of Variscan deformation in Iberia dates ca. 400 Ma (e.g. Dallmeyer and Ibarguchi 1990; Gómez Barreiro et al. 2006), while the deformation in Iberia dates ca. 400 Ma (e.g. Dallmeyer and Ibarguchi 1990; Gómez Barreiro et al. 2006). More recently, the late Carboniferous remagnetizations delivered pivotal input for Pastor-Galán et al. (2015a, 2016) and Fernández-Lozano et al. (2016) to discuss and discard a coeval secondary origin for the alleged curvature in Central Iberia (e.g. Martínez Catalán 2011; Shaw et al. 2012). The extent and boundaries of the Cantabrian orocline are now considered to include the two Paleozoic continents, Gondwana and Laurussia (Pastor-Galán et al. 2015b), involved in the Carboniferous Variscan collision in western Europe.
geochronological data (Gutiérrez-Alonso et al. 2015a). Petrologic and isotopic data also indicate that a pulse of magmatic and tectono-thermal took place over a short time window of 10–15 Myr together with orocline buckling at the end of the Carboniferous (Gutiérrez-Alonso et al. 2011a, b). Orocline formation and large scale intrusions are thought to be part of a single process of lithospheric buckling leading to lithospheric mantle foundering and replacement (Fernández-Suárez et al. 2002; Gutiérrez-Alonso et al. 2004; Pastor-Galán et al. 2012a).

Since the early twentieth century, several authors observed another arcuate structure in the central part of the Iberian Massif, of similar magnitude but with an opposite alleged curvature to the Cantabrian orocline (Staub 1926; Aerden 2004; Martínez-Catalán et al. 2011; Shaw et al. 2012). Its shape, kinematic and tectonic implications remained ignored for several decades, primarily due to poor outcrop exposure (Martínez Catalán et al. 2015). Martínez-Catalán (2011) and Shaw et al. (2012, 2016) hypothesized a common origin for both Cantabrian and Central Iberian curvatures that would have buckled together as coeval secondary oroclines. In contrast, Pastor-Galán et al. (2015a, 2016, in press) performed paleomagnetic studies and presented structural data from the hinge and southern limb of the putative Central Iberian curve that discard a coeval secondary formation for the Cantabrian orocline and Central Iberian curve and suggest that the Central Iberian curve, if real, must have been generated previous to 318 Ma.

The western Europe Variscan orogen is classically divided into a number of zones based on differences in the lower Paleozoic stratigraphy as well as structural style, metamorphism and magmatism, which broadly correspond to increasing distance from the Gondwanan margin (Lotze 1945; Julivert 1971; Franke 1989; Martínez Catalán et al. 1997, 2003; Ballèvre et al. 2014) towards the Rheic ocean. The study area is located in the southernmost part of the Central Iberian zone (CIZ; Fig. 1), one of the different
paleogeographic domains classically described in the Variscan Belt cropping out in Iberia (Lotze 1945; Ballèvre et al. 2014).

The southern CIZ is characterized by a thick sediment sequence of Neoproterozoic to early Cambrian age composed of alternating slates and greywackes (a.k.a. Schist-Greywacke complex). Unconformably overlying it, an up to 4000 m thick Ordovician to Devonian platform passive margin sequence deposited. It consists of alternating slates and quartzites with minor intercalations of volcanic rocks and limestones (e.g. Parra et al. 2006). The succession continues upward with a condensed lower Carboniferous slaty-calcareous unit, which includes intercalations of volcanic tuffs, followed discordantly by late Carboniferous continental conglomerates and sandstones of limited lateral extent (Bochmann 1956; Parra et al. 2006). The stratigraphic sequence terminates with a molassic sequence that postdates the Variscan cycle and was deposited in isolated continental Gzhelian basins (Stephanian in the European geological time scale; e.g., Puertollano; Wallis 1983).

In the southernmost portion of the CIZ, towards its southern border (Fig. 1) at the so called Central Unit (Azor et al. 1994; Simancas et al. 2001), two domains are defined: (i) a narrow outcrop that constitutes the southernmost Allochthonous unit (Martínez Poyatos 2002) composed of mostly Precambrian metasediments, with affinities to the Serie Negra in the Ossa-Morena Unit, overthrusting the (ii) Central Iberian paraautochthonous unit. The Central Iberian paraautochthonous unit is composed of two subunits separated by a major extensional south dipping shear zone named the Puente Génave-Castelo de Vide shear zone (PGCVSZ in Fig. 2; Parra et al. 2006).

In the first of the two domains, the Neoproterozoic Serie Negra includes limestones, which are locally named “Mármoles de la Roca de la Sierra” originally attributed to the Cambrian (Rosso de Luna and Hernández Pacheco 1954) and more recently to the Neoproterozoic. Samples labeled SP6 were retrieved from here. This domain over-lains the paraautochthonous through the Portalegre-Montoro Thrust (Fig. 2), emplacing tectonically the Neoproterozoic Serie Negra over the Carboniferous Gévora Formation (Santos and Casas 1979; Soldevila Bartolí 1992a; Rodríguez González et al. 2007). Gévora Fm. crops out in the core of the so-called La Codosera-Puebla de Obando syncline (Santos et al. 1991a, b). Rocks of the Gévora Fm. constitute a siliciclastic sequence with minor interbedded calcareous beds of Visean (Lower Carboniferous) age, based on fossils (Rodríguez González et al. 2007). The sequence is profusely intruded by sills of diabasic-rhyolitic composition. A recent Sm/Nd whole rock study on the diabases has provided an age of 436 ± 17 Ma (López-Moro et al. 2007), which is not in agreement with the paleontological content of their country rocks (Rodríguez González et al. 2007).

In the footwall of the Puente Génave-Castelo de Vide shear zone, in the northern part of the studied region, the CIZ is characterized by a thick sequence of Neoproterozoic-early Cambrian siliciclastic rocks (Schistose-Greywacke complex) unconformably overlain by Ordovician to Carboniferous rocks, mostly siliciclastic, with limestones,
red shales and volcanic tuffs in the lower Carboniferous part. López Díaz (1991), Soldevila Bartolí (1992b), Gutiérrez-Alonso et al. (2015b) provide extensive overviews on the stratigraphy and provenance of the rocks of this sector.

Structurally, in addition to the aforementioned major faults, the studied region is characterized by the presence of large WNW–ESE trending, upright to moderately south-verging, folds (Fig. 2), associated with an axial plane parallel rough cleavage. The rock pile is very-low grade metamorphic (Martínez Poyatos et al. 2001) as evidenced by the presence of chlorite ± prehnite ± pumpellyte associations in the early Carboniferous volcanic rocks in the core of the Sierra de San Pedro syncline (Fig. 3).

Voluminous late- to post-Variscan granitoids are present in the entire region, postdating all the previously described structures. The age of the main granite bodies in the area is ca. 309–305 Ma (U–Pb in zircon) for the Cabeza de Araya Pluton (Fig. 2; Gutiérrez-Alonso et al. 2011a; Rubio Ordóñez et al. 2016) and ca. 306 Ma (U–Pb in zircon) for the Nisa-Albulquerque pluton (Fig. 2; Solá et al. 2009; Gutiérrez-Alonso et al. 2011a).

The CAMP (Central Atlantic Magmatic Province) related Alentejo-Plasencia mafic dyke (NE–SW trend, cf. Fig. 2) was intruded at ca. 200 Ma (Dunn et al. 1998; Rincón et al. 2000; Palencia Ortas et al. 2006). There is no other record of any subsequent tectonic or intrusive effects in the region caused by the Mesozoic Atlantic opening or the Cenozoic Alpine orogeny. Only very minor (up to 3 km) recent strike slip displacements are documented (Villamor 2002).

3 Samples, paleomagnetic results and rock-magnetism

We collected a total of 118 oriented cores with a standard petrol paleomagnetic drill in latest Precambrian to early Cambrian and Carboniferous rocks from nine different sites (labeled SP and DB followed by site number) in Extremadura, W Iberia (Fig. 2, Table 1 and Supplementary file SF1). Samples from sites SP1–SP4, SP7, DB7 and DB8 were retrieved from the hanging-wall of the Puente Génave-Castelo de Vide shear zone whereas SP5 and SP6 were collected in its foot-wall. Sites SP1 to SP4 and SP7 are located in the core of the Sierra de San Pedro syncline, while samples labeled DB came from the Cáceres syncline (Fig. 3). SP1, SP3, SP7 are Lower Carboniferous limestones, DB correspond to equivalent limestones but they are intensely dolomitized. SP2 samples are Carboniferous fine grained siliciclastic rocks which are stratigraphically immediately below the lower Carboniferous limestones of the Sierra de San Pedro syncline. Finally, samples SP4 are volcanic tuffs and diabases of Lower Carboniferous age cropping out in the core of the Sierra de San Pedro and Cáceres synclines (Corretgé et al. 1982). Samples SP-5 correspond to carbonate layers interbedded into the Gévora Fm. Samples SP6 are also limestones, late Precambrian to
Table 1 N-number of demagnetized specimens

<table>
<thead>
<tr>
<th>Site name</th>
<th>N</th>
<th>Ns</th>
<th>Cutoff</th>
<th>Geographic</th>
<th>Tilt corrected</th>
<th>R</th>
<th>k</th>
<th>a95</th>
<th>K</th>
<th>A95</th>
<th>A95min</th>
<th>A95max</th>
<th>ΔDx</th>
<th>ΔIx</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mDec</td>
<td>mInc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mDec</td>
<td>mInc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude</td>
</tr>
<tr>
<td>SP1</td>
<td>16</td>
<td>17</td>
<td>45</td>
<td>135.2</td>
<td>12.1</td>
<td>108.6</td>
<td>49.5</td>
<td>15.6</td>
<td>37</td>
<td>6.1</td>
<td>67.8</td>
<td>4.5</td>
<td>14.3</td>
<td>4.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>39.40464</td>
</tr>
<tr>
<td>SP2</td>
<td>14</td>
<td>14</td>
<td>45</td>
<td>145.7</td>
<td>19.6</td>
<td>136.5</td>
<td>49.7</td>
<td>13.6</td>
<td>29.1</td>
<td>7.5</td>
<td>37</td>
<td>6.6</td>
<td>15.6</td>
<td>6.7</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>39.40464</td>
</tr>
<tr>
<td>SP4</td>
<td>12</td>
<td>13</td>
<td>45</td>
<td>139.9</td>
<td>15.5</td>
<td>129.6</td>
<td>36</td>
<td>10.4</td>
<td>6.7</td>
<td>18.1</td>
<td>14.2</td>
<td>12</td>
<td>4.4</td>
<td>17.1</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>39.40464</td>
</tr>
<tr>
<td>SP3</td>
<td>8</td>
<td>8</td>
<td>45</td>
<td>127.9</td>
<td>0.4</td>
<td>128.2</td>
<td>5.7</td>
<td>7.8</td>
<td>39.6</td>
<td>8.9</td>
<td>61.4</td>
<td>7.1</td>
<td>5.2</td>
<td>22.1</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>39.38689</td>
</tr>
<tr>
<td>SP5</td>
<td>14</td>
<td>15</td>
<td>45</td>
<td>115.2</td>
<td>23.3</td>
<td>11.7</td>
<td>49.2</td>
<td>13.3</td>
<td>18.9</td>
<td>9.4</td>
<td>24</td>
<td>8.3</td>
<td>15.6</td>
<td>8.5</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>39.18603</td>
</tr>
<tr>
<td>SP6</td>
<td>6</td>
<td>9</td>
<td>45</td>
<td>166.4</td>
<td>5</td>
<td>80.4</td>
<td>79.9</td>
<td>6</td>
<td>151.2</td>
<td>5.5</td>
<td>385</td>
<td>3.4</td>
<td>5.9</td>
<td>26.5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>39.11052</td>
</tr>
<tr>
<td>SP7</td>
<td>19</td>
<td>19</td>
<td>45</td>
<td>143.9</td>
<td>10.2</td>
<td>152.1</td>
<td>8.4</td>
<td>18.8</td>
<td>73.5</td>
<td>3.9</td>
<td>95.3</td>
<td>3.5</td>
<td>3.7</td>
<td>12.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>39.21550</td>
</tr>
<tr>
<td>SP-all geographic</td>
<td>88</td>
<td>95</td>
<td>45</td>
<td>138.3</td>
<td>12.7</td>
<td>82</td>
<td>14.4</td>
<td>4.1</td>
<td>20.6</td>
<td>3.4</td>
<td>2</td>
<td>4.9</td>
<td>3.4</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>SP-all tilt corrected</td>
<td>64</td>
<td>95</td>
<td>45</td>
<td>135.3</td>
<td>25.9</td>
<td>54.9</td>
<td>6.9</td>
<td>7.3</td>
<td>11</td>
<td>5.6</td>
<td>2.3</td>
<td>6</td>
<td>5.8</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>DB7</td>
<td>10</td>
<td>13</td>
<td>45</td>
<td>359.9</td>
<td>48.7</td>
<td>10.8</td>
<td>14.3</td>
<td>9.5</td>
<td>17.1</td>
<td>12</td>
<td>13.9</td>
<td>13.4</td>
<td>4.8</td>
<td>19.2</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>39.44221</td>
</tr>
<tr>
<td>DB8</td>
<td>10</td>
<td>10</td>
<td>45</td>
<td>345.1</td>
<td>48.6</td>
<td>354.5</td>
<td>41</td>
<td>9.9</td>
<td>75.3</td>
<td>5.6</td>
<td>57.5</td>
<td>6.4</td>
<td>4.8</td>
<td>19.2</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>39.44539</td>
</tr>
<tr>
<td>DB all geographic</td>
<td>20</td>
<td>23</td>
<td>45</td>
<td>352.4</td>
<td>48.9</td>
<td>19.3</td>
<td>26.5</td>
<td>6.5</td>
<td>20.3</td>
<td>7.4</td>
<td>3.6</td>
<td>12.4</td>
<td>8.6</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>DB all tilt corrected</td>
<td>20</td>
<td>23</td>
<td>45</td>
<td>3.5</td>
<td>28.2</td>
<td>18.7</td>
<td>14.4</td>
<td>8.9</td>
<td>21.5</td>
<td>7.2</td>
<td>3.6</td>
<td>12.4</td>
<td>7.5</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

As number of specimens that passed the Cutoff, mDec mean declination, mInc mean inclination, k precision parameter, a95 radius of the 95% confidence cone about site-mean direction, K precision parameter of the poles, A95 radius of 95% confidence circle around paleomagnetic pole, A95min and A95max describe the minimum and maximum values of A95 allowed to considered the average representative. ΔDx, uncertainty in declination; ΔIx, uncertainty in inclination.
early Cambrian in age, intensely strained and recrystal-
lized, that were collected in the southernmost domain of
the CIZ.

3.1 Paleomagnetism

The natural remanent magnetization (NRM) of samples was
investigated through thermal and alternating field (AF)
demagnetization. AF demagnetization was carried out using
a robotized 2G-SQUID magnetometer, through variable
field increments (4–10 mT) up to 70–100 mT (Mullender
et al. 2016). In those samples where pyrite was expected
(SP1, SP2, SP4–SP7), we carried out thermal demagneti-
zation up to 350 °C and subsequent AF demagnetization
(Fig. 4). This procedure avoids the generation of new
magnetite crystals from oxidation of pyrite (usually starting
at 400–450 °C; Fig. 5), which precludes proper recovering
of the NRM behavior in thermal demagnetization. Stepwise
thermal demagnetization was applied with 20–50 °C incre-
ments until 350 °C or until complete demagnetization. Some
representative vector end-point “Zijderveld” diagrams (Zi-
jderveld 1967) are shown in Fig. 4. A minimum of 5 points
were considered to characterize a remanent direction;
directions showing maximum angular deviation (MAD)
over 15° were discarded. We performed all directional and
statistical analyses with the online platform http://www.
paleomagnetism.org (Koymans et al. 2016).

Most samples show a low temperature viscous compo-
nent (VRM), which usually is removed below 200 °C or
15 mT (Fig. 4; Supplementary file SF1). After VRM
removal, all samples show a single NRM component
generally going to the origin regardless of the different
lithologies studied. We identify this component as the
characteristic remanent magnetization (ChRM).

Fig. 4 Examples of vector end-
point “Zijderveld” plots and the
paleomagnetic directions
interpreted from them. Closed
(open) symbols represent the
projection on the horizontal
(vertical) plane.

Fig. 5 Thermomagnetic (SP2
and SP1.8) and thermal decay
curves (SP4.8 and SP6.4) used
to infer the magnetic
mineralogy. SP2 (siltstone)
reveals the presence of
hematite. SP 1.8 (limestone)
shows a paramagnetic behavior
together with the presence of
pyrite (non-magnetic) that
transforms into magnetite when
the sample is heated over
400 °C. SP4.8 (metavolcanic
rock) shows (Ti−) magnetite as
the main carrier. SP 6.4
(limestone): main carrier is
pyrrhotite.
Demagnetization analysis of the limestone samples (SP1, SP3, SP5, SP6, SP7) confirms that pyrrhotite and magnetite are carriers of the magnetization in different proportions depending on the site and the individual sample. Some samples are fully demagnetized between 280 and 320 °C and barely demagnetized in AF which is a foremost characteristic of pyrrhotite (Fig. 5; Supplementary file SF1; Dekkers 1988; Pastor-Galán et al. 2016) and others are completely demagnetized at 60 mT or 580 °C which indicates the presence of (low Ti—) magnetite. SP4 (volcanic) and DB (DB7 and DB8, dolomitized limestones) are fully demagnetized at 580 °C and between 60 and 80 mT, indicating that the carrier is magnetite. The carrier in SP2 samples (red siltstones) is hematite, thermally demagnetizing at temperatures over 600 °C and showing barely any decay during AF demagnetization.

Mean directions and uncertainties of each component were evaluated using Fisher statistics of virtual geomagnetic poles (VGPs). We applied a fixed 45° cut-off to the VGP distributions of each site. In addition, we used the Deenen et al. (2011) criteria to evaluate the scatter of VGPs. As a general rule, if scatter is—mostly—due to paleosecular variation (PSV) of the geomagnetic field, the associated VGP distribution has to be circular. However, structural problems, vertical axis rotation or inclination shallowing may add important sources of scatter. In such cases, VGP distributions will be elongated instead of circular.

ChRM directions in SP and DB samples appear to be different. In SP samples we identified a single polarity NRM component with shallow inclinations (between −5° and 20°) and declinations ranging from 128° to 166° in geographic coordinates (Table 1; Fig. 6). After tilt correction, site averages show marked scatter (Fig. 6). We performed a fold-test (SP1–SP4) and two tilt-tests in combining this fold test with the rest of SP samples (Fig. 6). A first tilt-test includes SP7 samples collected in the same structural unit (Fig. 7b), but relatively far from the syncline and the second includes all SP samples (Fig. 7c). Fold- and tilt-test results are negative indicating that the magnetization is post folding. When all SP samples are considered together, the average direction is \(\text{Dec.}/\text{Inc.} = 138.3°/12.7° \) (Table 1; Fig. 8). However, individual data points scatter significantly in declination (98°–173°); the data as a whole shows an elongated VGP distribution at E–W coordinates (Fig. 8).

DB samples show a single polarity ChRM, with declinations between 345° and 0° and inclination of ~49° (Table 1; Fig. 9) in geographic coordinates. Both sites share a common true direction following both McFadden
and McElhinny (1990; classification C) and Tauxe (2010) (Supplementary file SF2). After tilt correction directions scatter (Fig. 9) and stop sharing a common true direction (Supplementary file SF2) indicating that samples DB were remagnetized after folding.

3.2 Rock magnetism

3.2.1 Thermomagnetic runs

Nine high-field thermomagnetic runs were measured in air with an in-house-built horizontal translation-type Curie balance with a sensitivity of approximately \(5 \times 10^{-9} \text{ Am}^2 \) (Mullender et al. 1993). About 50–80 mg of powdered sample material from representative lithologies were placed into quartz glass sample holders and were held in place by quartz wool. Heating and cooling rates were 6 and 10 °C min\(^{-1}\) respectively. Stepwise thermomagnetic runs were carried out with intermittent cooling between successive heating steps. The successive heating and cooling segments were 150, 100, 250, 200, 400, 350, 520, 450, 620, 550, 700 and finally back to 25 °C, respectively. Heating and cooling rates were 6 and 10 °C min\(^{-1}\) respectively.

Nearly all samples only show a paramagnetic contribution (Fig. 5; Supplementary file SF2). SP1 marks the presence of pyrite and SP2 reveals hematite as main magnetic carrier (Fig. 5). However, stepwise demagnetization diagrams of the natural remanent magnetization (NRM) with a maximum unblocking temperature of \(\sim 320 \) °C but high coercitivity (essentially no demagnetization at 100 mT) for several specimens in limestone bearing sites SP1, SP3, SP5–SP7, reveal the presence of pyrrhotite (Fig. 5 and Supplementary file SF2; e.g. Dekkers 1988; Pastor-Galán et al. 2016). Pyrrhotite occurs commonly as a secondary mineral in high-diagenetic and very
low-grade metamorphic limestones (e.g. Appel et al. 2012; Aubourg et al. 2012). The same diagrams for sites DB7, DB8 and SP4 show the presence of magnetite (maximum unblocking temperature of \(\sim 580 \, {\text{C}}\); Fig. 5 and Supplementary file SF2).

3.2.2 Hysteresis loops

We measured seven hysteresis loops (at room temperature) with an alternating gradient force magnetometer (MicroMag Model 2900 with \(2 \, \text{T} \) magnet, Princeton Measurements Corporation, noise level \(2 \times 10^{-9} \, \text{Am}^2\), P1 phenolic probe). Typical sample mass ranged 20–50 mg. The maximum applied field was \(1 \, \text{T} \), field increment 10 mT, and the averaging time for each measurement was 0.15 s. The saturation magnetization (Ms), remanent saturation magnetization (Mrs), and coercive force (Bc) were determined from the hysteresis loops. These parameters were determined after correction for the paramagnetic contribution from fields upward of 700 mT. The maximum applied field was \(1 \, \text{T} \).

Different loop shapes were found (Fig. 10; raw data in SF3): (i) A goose-necked loop that does not saturate at 1 T which points to the presence either of two magnetic minerals or two particle-size distributions with distinct coercivity windows (Fig. 10, SP2.5—red siltstone) indicating the presence of a very hard and a softer phase. (ii) A classical pseudo-single domain loop (Fig. 10, SP4.8—volcanic rock), that saturates before 0.5 T indicating magnetite. (iii) Wasp-waisted loops that barely saturate at 1 T indicating two distinct coercivity windows (Fig. 10, SP7.5—limestone). This points to the presence of a hard phase (pyrrhotite) along with a soft phase (probably magnetite).

3.2.3 IRM acquisition curves

We have obtained 22 isothermal remanent magnetization (IRM) curves from samples of SP1–SP3 and SP5–SP7. Before the actual IRM acquisition, samples were AF demagnetized with the static 3-axis AF protocol with the final demagnetization axis parallel to the subsequent IRM acquisition field, a procedure that generates IRM acquisition curves with a shape as close to a cumulative-lognormal distribution as possible (Egli 2004; Heslop et al. 2004). IRM acquisition curves consist of 61 IRM levels up to 700 mT. IRM acquisition curves show three shapes (Fig. 11a): (1) SP2 samples (red siltstones) that do not saturate at 700 mT; (2) silicified limestones (SP3 and 5) with almost linear IRM acquisition curves; and (3) limestones (SP1, SP3, SP6, SP7) in which most IRM is acquired below 100 mT.

Measured IRM acquisition curves can be decomposed into one or more cumulative log-normal coercivity components representing individual magnetic mineral phases. IRM component analysis enables a semi-quantitative evaluation of different coercivity components (i.e. magnetic minerals or particle sizes) to a measured IRM acquisition curve. Every fitted log-normal curve is characterized by three parameters: (1) The field \((B_{1/2})\) corresponding to the field at which half of the saturation isothermal remanent magnetization (SIRM) is reached; (2) the magnitude of the phase \((M_{ri})\), which indicates the contribution of the component to the bulk IRM acquisition curve; and (3) The dispersion parameter \((D_{P})\), expressing the width of the coercivity distribution of that mineral phase and corresponding to one standard deviation of the log-normal function (Kruiver et al. 2001; Heslop et al. 2002).

We analyzed the specimens following the cumulative log-Gaussian approach (Kruiver et al. 2001) with the possibility of including skewness using the online tool MAX UnMix (Maxbauer et al. 2016). SP2 samples are characterized by a single IRM component that does not saturate at
700 mT, it has a high $B_{1/2}$ that we have estimated at ~ 1000 mT, and a DP between 0.3 and 0.35 (log units) (Fig. 11b and Supplementary Data). This component indicates hematite as the magnetic mineral. Results from the limestone samples (SP1, SP3, SP5, SP6 and SP7) are characterized by two main IRM components: (a) a component with $B_{1/2}$ between 22 and 90 mT and DP of ~ 0.35 (log units); and (b) a second, higher coercitivity component with a $B_{1/2}$ ranging between 180 and 600 mT and DP between 0.33 and 0.38 (log units). Component 1 is present in all samples and its SIRM percentages vary from 20 to ~ 100% (Fig. 11a). Component 2 therefore ranges from 0% to a maximum of ~ 80% of the SIRM. Component 1 fits with fine-grained magnetite and component 2 is likely to be pyrrhotite (Fig. 11b and Supplementary file SF3). The rock magnetic properties served to chart potential variability of the sample collection and to constrain the NRM interpretation. IRM acquisition curves and hysteresis loops fit nicely with a pyrrothite-magnetite magnetic carrier for limestones and hematite for the sandstones. Presence of pyrrhotite excludes a primary NRM (see Sect. 4) being this an important criterion for our geological interpretation of the NRM directions.

4 Discussion

Rock magnetic analyses indicate pyrrhotite and magnetite to be the magnetic carriers in the limestones whereas magnetite and hematite are the carriers in volcanics, dolomites and siltstones respectively. Pyrrhotite is a secondary mineral which is formed in limestones under ancinhematomorphic or very low grade metamorphic conditions. Importantly it is quite stable in low-grade metamorphic rocks under reducing conditions (Aubourg et al. 2012). Pyrrhotite occurs commonly as a magnetic carrier in remagnetized limestone formations in the hinterland of the Iberian Variscan belt (Pastor-Galán et al. 2015a, 2016; Fernández-Lozano et al. 2016). The mere observation of pyrrhotite in limestones points to remagnetized rocks. The known plate tectonic motion of Iberia allows to further constrain the possible remagnetization timing of the studied samples. According to data available, present-day Iberian peninsula was located at low latitude in the southern hemisphere during the late Carboniferous (e.g. Pastor-Galán et al. 2016), crossed the equator during early Permian times (e.g. Weil et al. 2010) and migrated North during the Triassic and Jurassic (e.g. Torsvik et al. 2012). It remained at ~ 30°N until Eocene times, only to head North again until its present day latitude (~ 40°) after the Eocene.

4.1 Significance of Caceres syncline results (DB samples)

The Cáceres syncline samples (DB7 and DB8) cluster better before any tilt correction with a downward inclination of ~ 49° ± 8.5° (Table 1). Therefore, rocks acquired their remagnetized NRM after the Variscan folding event and during a period in which Iberia was located between...
23°N and 38°N. With these inclinations, the global apparent polar wander path (GAPWaP) of Torsvik et al. (2012) calculated for Iberia (using the online application Paleomagnetism.org, cf. Koymans et al. 2016) do not allow the remagnetization to be older than 225 Ma (Fig. 9). The declinations can also be used to further constrain the timing of the remagnetization because significant local Alpine rotations do not occur in the area. In this way the period between 175 Ma and 110 Ma can be discarded (Fig. 9). Our results support a best fit for the remagnetization either at the Triassic–Jurassic boundary interval (210–190 Ma), or during Late Cretaceous (Fig. 9). A very young, subrecent remagnetization, however, cannot be ruled out with our paleomagnetic data. The single normal polarity of the ChRM in the DB samples may be indicative that remagnetization occurred during the Cretaceous superchron (85–126 Ma).

4.2 Sierra de San Pedro, La Codosera-Puebla de Obando and La Roca de la Sierra (SP samples)

In all SP samples, and regardless of their age and lithology, we have documented post-folding magnetizations with shallow inclinations together with the occurrence of a single polarity (Figs. 6, 8). This constrains the samples’ NRM acquisition to a period during the Kiaman reversed superchron (318–265 Ma; Langereis et al. 2010) but before Iberia migrated to the northern hemisphere in the early Permian (Weil et al. 2010), hemisphere in which, during reverse chron, inclinations are upwards. In addition, the average declination shows a general counter-clockwise rotation of ~20° from the expected direction at early Permian times (Dec./Inc. = 158°/–5°; Weil et al. 2010; Table 1), although the rotation varies between sites ranging from 0° to 40° (Table 1). This variability in declination comes with consistent inclinations among the sites.

4.3 Remagnetization in the Variscan hinterland during the Cantabrian orocline formation

When considering all SP results together they are characterized by largely varying SE declinations (98° to 173°) and an EW elongated VGP distribution (Fig. 8). Samples magnetized at low latitudes are typified by large scatter in inclination and rather small in declination (Tauxe and Kent 2004) in contrast to the distribution found in SP samples. Typical candidates producing elongated VGPs are: (i) structural complexity, (ii) inclination shallowing, or (iii) vertical axis rotations. The studied area is dominated by a relatively simple structure, depicting open upright folds with no plunging axis (see Sect. 2). We can, therefore, discard structural complexity as the main source of scatter. The NRM, being remagnetized after diagenesis and rock consolidation cannot show compaction-related inclination shallowing. Vertical axis rotation is therefore the only plausible cause for the observed scatter.

Pastor-Galán et al. (2015a, 2016) interpreted the dispersion in declination and elongated VGP distribution in other areas of the Central Iberian zone as the result of a remagnetization event taking place during a counterclockwise rotation related to the formation of the Cantabrian Orocline (310–297 Ma). To further test this hypothesis, we add to the original analysis (Pastor-Galán et al. 2015a) our new dataset from Sierra de San Pedro and data published by Fernández-Lozano et al. (2016), both from the hinterland of the Iberian Variscides (Fig. 12).

It is known that western Iberia registered no major differential rotations since the early Permian (Osete et al. 1997; Neres et al. 2013). Thus, we can calculate the expected declination for each locality at early Permian times using the pole obtained by Weil et al. (2010; Fig. 12). To calculate the expected declination in the late Carboniferous we used the Bootstrapped Orocline test applied to the Cantabrian zone (Pastor-Galán et al. 2017). The orocline test indicates the degree of differential vertical axis rotations undergone by distinctly trending orogenic tracts. When plotting declination vs. strike, the slope between declination and strike is 1 when all curvature is produced by vertical axis rotation; it is 0 when the observed curvature is not due to orocline bending (Schwartz and van der Voo 1983; Yonkee and Wei 2010; Pastor-Galán et al. 2017). Once an orocline test is built on a wealth of data, as is the case with the Cantabrian orocline test (Weil et al. 2013), it is possible to infer the expected declination in a portion of the orocline knowing its strike (Fig. 12). Following this procedure we calculated a pre-Cantabrian Orocline formation reference declination and uncertainty for each locality based on their regional strike (using fold axes orientations), assuming that the sites are part of the southern limb of the Cantabrian orocline (Fig. 12) as dictated by the sense of the rotation determined in this study and by Pastor-Galán et al. (2015a, 2016).

Individual or grouped directions from the five localities plot in a girdle from the expected declinations in the late Carboniferous to the early Permian with minor variations in inclination (Fig. 12). This result supports a widespread remagnetization in the hinterland of the Variscan belt in Iberia during the formation of the Cantabrian orocline (Figs. 12, 13). Cosevial with the remagnetization a large volume of igneous rocks intruded along the entire hinterland of the Variscan belt in Iberia (e.g. Gutiérrez-Alonso et al. 2011a). Pastor-Galán et al. (2016) ascribed the remagnetization in the Tamames syncline (Fig. 12) to the fluids associated with the emplacement of late Carboniferous granitoids in the surrounding area. The results
presented in this paper permit us to expand this scenario to the whole Variscan hinterland (Fig. 13).

The paleomagnetic results in the hinterland, in the northern limb, hinge and southern limb of the putative Central Iberian curvature (which is sometimes alleged as an orocline) are identical and show counter-clockwise rotations, which are the expected result for the southern limb of the Cantabrian Orocline (Figs. 12, 13). The lack of differential axis rotations in West and South West Iberia (Figs. 12, 13) fully discards a late Carboniferous or younger origin for the Central Iberian curvature. The latter together with the absence of non-coaxial deformation in the hinge of the Central Iberian bend strongly supports the idea that most of the observed curvature is inherited or a geometrical effect possibly owing to the shape of the Galicia-Tras-os-Montes thrust sheet.

5 Conclusions

Our data from Extremadura (southern Central Iberian zone) show that the rocks in the region were affected by two different remagnetization events localized in two different sectors. The intensely dolomitized limestones from the Cáceres syncline (sites DB7 and DB8), were remagnetized at middle latitudes and their ChRM, carried by magnetite, supports a Mesozoic or Cenozoic remagnetization, being the Triassic-Jurassic boundary interval or the late Cretaceous our best options. The remainder of the studied rocks from Sierra de San Pedro and La Codosera-Puebla de Obando synclines show consistent shallow inclinations and a large scatter in declinations supporting a 70° to 90° CCW rotation. The limestones (sites SP1, SP3, SP5–SP7) show pyrrhotite as one of the magnetic carriers in contrast to the rocks from the Cáceres syncline. The scatter in declination...
and pyrrhotite as magnetic carrier in limestones are common features in rocks of the Iberian hinterland of the Variscan orogen. We interpret that most of this hinterland remagnetized during the vertical axis rotation that led to the Cantabrian Orocline. The described CCW is common both in the north and south of the putative Central Iberian curve, discarding a late Carboniferous orocline formation in Central Iberia. In contrast, this CCW rotation is fully compatible with the southern limb of the Cantabrian orocline, extending the southern Cantabrian orocline boundaries to at least most of the Iberian peninsula.

Acknowledgements We thank Alicia López-Carmona, Piedad Franco and Eva Manchado for their assistance with thin sections. M. Suárez provided X-Ray diffraction analysis for some of the studied samples. Daniël Brouwer helped to collect and analyze the DB samples. We thank two anonymous reviewers their insights and help to improve this paper. DPG is funded by a Japan Society for Promotion of Science (JSPS) fellowship for overseas researchers (P16329) and a MEXT/JSPS KAKENHI Grant (JP16F16329). GGA is funded by the Spanish Ministry of Economy and Competitiveness under the project ODRE III-Oroclines and Delamination: Relations and Effects (CGL2013-46061-P) and project Origin, metallogeny, climatic effects and cyclicity of Large Igneous Provinces (LIPs) (N14.Y26.31.0012) funded by the Russian Federation. DPG wants to acknowledge Billy Shears on its 50th anniversary for this 20 years of raising my smile. This paper is part of UNESCO IGCP Projects 574: Buckling and Bent Orogens, and Continental Ribbons; 597: Amalgamation and breakup of Pangaea: The Type Example of the Supercontinent Cycle; and 648: Supercontinent Cycles and Global Geodynamics.

References

Tectonophysics, 420, 455–472.

Tectonophysics, 622, 110–121. https://doi.org/10.1016/j.tecto.2014.03.004.

Lithosphere, 9(3), 499–511.

Geocaceta, 27, 143–146.

Geo-Temas, 16(2), 63–66.

Boletín Geológico y Minero, 90, 420–431.

Geophysical Research Letters, 10(7), 505–508.

Lithosphere, 8(1), 97. https://doi.org/10.1130/L461.1.

Tectonophysics, 332, 295–308.

Tauxe, L., & Kent, D. V. (2004). A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?

Timescales of the Paleomagnetic field, 1, 101–115.

